Your browser doesn't support javascript.


Caribbean Public Health Agency

Home > Search > ()
Print Export

Export format:



Add more contacts

Send result
| |

Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar small-molecule detection directly in aqueous samples.

Wagner, Sabine; Bell, Jérémy; Biyikal, Mustafa; Gawlitza, Kornelia; Rurack, Knut.
Biosens Bioelectron; 99: 244-250, 2018 Jan 15.
Article in En | MEDLINE | ID: mdl-28772227


Fluorescent sensory MIP (molecularly imprinted polymer) particles were combined with a droplet-based 3D microfluidic system for the selective determination of a prototype small-molecule analyte of environmental concern, 2,4-dichlorophenoxyacetic acid or 2,4-D, at nanomolar concentration directly in water samples. A tailor-made fluorescent indicator cross-linker was thus designed that translates the binding event directly into an enhanced fluorescence signal. The phenoxazinone-type cross-linker was co-polymerized into a thin MIP layer grafted from the surface of silica microparticles following a RAFT (reversible addition-fragmentation chain transfer) polymerization protocol. While the indicator cross-linker outperformed its corresponding monomer twin, establishment of a phase-transfer protocol was essential to guarantee that the hydrogen bond-mediated signalling mechanism between the urea binding site on the indicator cross-linker and the carboxylate group of the analyte was still operative upon real sample analysis. The latter was achieved by integration of the fluorescent core-shell MIP sensor particles into a modular microfluidic platform that allows for an in-line phase-transfer assay, extracting the analyte from aqueous sample droplets into the organic phase that contains the sensor particles. Real-time fluorescence determination of 2,4-D down to 20nM was realized with the system and applied for the analysis of various surface water samples collected from different parts of the world.